Plastic Water

Model PW

Unlike other water equivalent plastics on the market, Plastic Water® is flexible and resists breakage under impact. Plastic Water is the only calibration material available in 1 mm thicknesses. Original Plastic Water® is the only material which agrees with true water within 0.5% above 7 MeV. Custom cavities are available to accommodate any ion chamber on the market (simply provide detailed drawings when ordering).*

CIRS can simulate any tissue found in the human body and many phantoms contain multiple tissue substitutes. Water, however, is the most important reference material in Medical Physics. To accurately simulate water over all energy from 10 keV to 100 MeV with a singular solid materials is one of the more challenging tasks in the field of Tissue Simulation.

CIRS water equivalent materials are formulated to mimic within 1% or better for specific energy ranges:

Plastic Water® LR – 15 keV – 8 MeV
Use for such things as dose evaluation for low energy brachytherapy sources or CT dose verification.1

Plastic Water® DT – 50 keV – 15 MeV*
Use for special applications requiring exposures to both diagnostic and therapeutic energies such as radiation therapy planning and dose verification in IMRT.2

Plastic Water® – The Original – 150 keV – 100 MeV
Permits calibration of photon and electron beams within 0.5% of true water dose. Ideal for routine beam constancy checks.3

  • Available in 1 mm thickness
  • Easy to machine
  • Durable
  • Five year written warranty

NOTE: This product or an optional accessory of this product requires a CIRS dosimetry cavity code before an order can be placed. Please refer to the Dosimetry Cavity Codes document to identify the CIRS code for the probe you intend to use with this product.

Data Sheet

Plastic Water: Data Sheet

Dosimetry Cavity Codes

Cavity Codes for Dosimetry Devices


Publication References

Demez N, Lee TK. Study on the compatibility of tissue equivalent phantoms for use in proton beam therapy QA. E-Poster Presentation, European Society for Therapeutic Radiology and Oncology (ESTRO 31) Barcelona, Spain, 2012. View

Guillot M, Beaulieu L, Archambault L, Gingras L, Beddar S. A New Water-Equivalent 2D Plastic Scintillation Detectors Array for the Dosimetry of Megavoltage Energy Photon Beams in Radiation Therapy. Medical Physics. 2011; 38(12):6763-6774. View

Xu L, McEwen M, Cojocaru C, Faddegon B. SU-FF-T-443: Measurement of Lateral Dose Distributions Using GafChromic EBT Films and PTW Starcheck 2-D Array. Medical Physics. 2009; 36(6). View

Beardmore AB, Rosen II, Cheek DA, Fields RS, Hogstrom KR. Evaluation of MVCT images with skin collimation for electron beam treatment planning. J Appl Clin Medical Physics. 2008; 9(3):2773. View

Lacroix F, Archambault L, Gingras L, et al. Clinical prototype of a plastic water-equivalent scintillating fiber dosimeter array for QA applications. Medical Physics. 2008; 35(8):3682-3690. View

Ramaseshan R, Kohli K, Cao F, Heaton R. A Dosimetric evaluation of Plastic Water-Diagnostic-Therapy (PWDT). Journal of Applied Clinical Medical Physics. 2008; 9(2). View

Carrasco P, Jornet N, Duch MA, et al. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities. Medical Physics. 2007; 34(8):3323-3333. View

Goodsitt M, Chan H P, Way T W, et al. Accuracy of the Ct Numbers of Simulated Lung Nodules Imaged with Multi-Detector Ct Scanners. Medical Physics. 2006; 33(8):3006-3017. View

McEwen MR, Niven D. Characterization of the phantom material virtual water in high-energy photon and electron beams. Medical Physics. 2006; 33(4):876-87. View

Carrasco P, Jornet N, Duch MA, et al. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium. Medical Physics. 2004; 31(10). View

Casar B, Zdesar U, & Robar V.  Evaluation of water equivalency of Plastic Water™ for high-energy electron beams using IAEA TRS-398 Code of Practice.  Radiology and Oncology. 2004; 38(1):55-60. View

2Heaton R, et al, Dosimetric Evaluation of Plastic Water-Diagnostic-Therapy (PWDT) Phantom Material. Poster presented at annual AAPM meeting, 2003; Poster# PO-T-97. View

Saitoh H, Tomaru T, Fujisaki, T, et al. A Study on Properties of Water Substitute Solid Phantom using EGS Code. In: Vol 2002. Japan; 2003; 55-63. View

1Wallace RE. AbstractID: 8072 Title: Evaluated Phantom Material for 125I and 103Pd Dosimetry. AAPM Annual Meeting, Montreal, Canada. 2002 View

Watts RJ. Method to QA 3-D Treatment Planning Systems.  Presented at annual AAPM meeting, San Antonio TX, 2001; International Medical Physics Services; Poster# SU-FF-EXH C-48. View

Allahverdi M, Nisbet A, Thwaites DI. An evaluation of epoxy resin phantom materials for megavoltage photon dosimetry. Physics in Medicine and Biology. 1999; 44(5). View

3Tello VM. How water equivalent are water-equivalent solid materials for output calibration of photon and electron beams? Medical Physics. 1995; 22(7). View

Tello, VM, Evaluation of Plastic Water (Cream Colored) for Absorbed Dose Calibration of Photon and Electron Beams. Presented at the AAPM Southwest Chapter Meeting, 1992. View

Robinson J, Opp D, Zhang G, Feygelman V. Evaluation of inhomogeneity correction factors for 6 MV flattening filter-free beams with brass compensators. J Appl Clin Med Phys. 2013;14(3):3990. View

Wack L, Ngwa W, Tryggestad E, et al. High throughput film dosimetry in homogeneous and heterogeneous media for a small animal irradiator. Phys Med. 2013. View

Berbeco RI, Korideck H, Ngwa W, et al. DNA damage enhancement from gold nanoparticles for clinical MV photon beams. Radiat Res. 2012;178(6):604-8. View

Thapa, Bishnu Bahadur, “DEVELOPMENT OF A PATIENT SPECIFIC IMAGE PLANNING SYSTEM FOR RADIATION THERAPY” (2013).Theses and Dissertations–Physics and Astronomy.Paper 11. View

Opp D, Forster K, Feygelman V. Commissioning compensator-based IMRT on the Pinnacle treatment planning system. J Appl Clin Med Phys. 2011;12(2):3396. View

Gossman MS, Das IJ, Sharma SC, Lopez JP, Howard CM, Claudio P. A novel phantom model for mouse tumor dose assessment under MV beams. Health Phys. 2011;101(6):746-53. View

Wilson JP, Mulligan K, Fan B, et al. Dual-energy X-ray absorptiometry-based body volume measurement for 4-compartment body composition. Am J Clin Nutr. 2012;95(1):25-31. View

Bing F, Doucet R, Lacroix F, et al. Liquid embolization material reduces the delivered radiation dose: clinical myth or reality?. AJNR Am J Neuroradiol. 2012;33(2):320-2. View

Eaton, D. J., Best, B., Brew-Graves, C., Duck, S., Ghaus, T., Gonzalez, R., Pigott, K., … Keshtgar, M. R. S. (April 01, 2012). In Vivo Dosimetry for Single-Fraction Targeted Intraoperative Radiotherapy (TARGIT) for Breast Cancer. International Journal of Radiation Oncology, Biology, Physics, 82, 5.) View

Sethi A, Chinsky B, Gros S, Diak A, Emami B, Small W Jr. Tissue inhomogeneity corrections in low-kV intra-operative radiotherapy (IORT). Transl Cancer Res 2015;4(2):182-188. doi: 10.3978/j.issn.2218-676X.2015.04.08 View

Candela-juan C, Vijande J, García-martínez T, et al. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry. Med Phys. 2015;42(8):4954. View

López-tarjuelo J, Morillo-macías V, Bouché-babiloni A, Ferrer-albiach C, Santos-serra A. Defining Action Levels for In Vivo Dosimetry in Intraoperative Electron Radiotherapy. Technol Cancer Res Treat. 2015;:1533034615588196. View

Chamberland, E., Beaulieu, L., & Lachance, B. (2015). Evaluation of an electron Monte Carlo dose calculation algorithm for treatment planning. Journal Of Applied Clinical Medical Physics, 16(3). doi:10.1120/jacmp.v16i3.4636. View

Yeo, I., Teran, A., Ghebremedhin, A., Johnson, M., & Patyal, B. (2015). Radiographic film dosimetry of proton beams for depth-dose constancy check and beam profile measurement. Journal Of Applied Clinical Medical Physics, 16(3). doi:10.1120/jacmp.v16i3.5402. View

Chang, C., Poole, K., Teran, A., Luckman, S., & Mah, D. (2015). Three-dimensional gamma criterion for patient-specific quality assurance of spot scanning proton beams. Journal Of Applied Clinical Medical Physics, 16(5). doi:10.1120/jacmp.v16i5.5683. View

Louis-Philippe Gagnon, Sam Beddar, Luc Beaulieu, Characterization of a fiber-taper charge-coupled device system for plastic scintillation dosimetry and comparison with the traditional lens system, Radiation Measurements, Volume 73, February 2015, Pages 60-68, ISSN 1350-4487. View

Malkov S, Cawthon PM, Peters KW, et al. Hip Fractures Risk in Older Men and Women Associated With DXA-Derived Measures of Thigh Subcutaneous Fat Thickness, Cross-Sectional Muscle Area, and Muscle Density. J Bone Miner Res. 2015;30(8):1414-21. View

Chan E, Lydon J, Kron T. On the use of Gafchromic EBT3 films for validating a commercial electron Monte Carlo dose calculation algorithm. Phys Med Biol. 2015;60(5):2091-102. View

Carrara M, Tenconi C, Rossi G, et al. In vivo rectal wall measurements during HDR prostate brachytherapy with MOSkin dosimeters integrated on a trans-rectal US probe: Comparison with planned and reconstructed doses. Radiother Oncol. 2016;118(1):148-53. View

Tseng HC, Liu WS, Tsai HH, Chu HY, Lin JB, Chen CY. Radiation dose for normal organs by helical tomotherapy for lung cancer. Appl Radiat Isot. 2015;102:35-41. View

Mendez, I., Z. Šljivić, R. Hudej, A. Jenko, and B. Casar. “Grid Patterns, Spatial Inter-scan Variations and Scanning Reading Repeatability in Radiochromic Film Dosimetry.” Elsevier, 2016. Web. View

Zwan BJ, Hindmarsh J, Seymour E, et al. The dosimetric impact of control point spacing for sliding gap MLC fields. J Appl Clin Med Phys. 2016;17(6):6345. View

Yu, P.C., H.H. Nien, and C.J. Tung. “CT-based MCNPX Dose Calculations for Gynecology Brachytherapy Employing a Henschke Applicator.” Elsevier, 2017. Web. View

Model: PW Modality: