CIRS Motion Control User Guide

CIRS Motion Control User Guide

© 2017-2023 by Computerized Imaging Reference Systems, Inc. All rights reserved.
The information contained in this guide is copyrighted and all rights reserved by CIRS. Copying, duplicating, selling, or otherwise distributing any part of this guide without the prior written consent of CIRS is prohibited.

CIRS reserves the right to make periodic modifications to this guide without obligation to notify any person or entity of such revision.

19 January 2023

CIRS

900 Asbury Ave
Norfolk, Virginia 23513 USA
+1-321-259-6862
www.sunnuclear.com

Contents

Section 1. Introduction 1
Installation 1
Section 2. User Interface 2
User Interface 2
Phantom Selection 2
Motion Control Window. 3
For Models 008A, 18023-A, 18043-A, 008PL, 008Z, and 008PLX 3
For Model 008P 3
For Model 008C 3
Section 3. Motion Setup 5
Using the Motion Library. 5
For Models 008A, 008PL, 18023-A,
18043-A, 008Z, and 008PLX 5
For Model 008P 5
Running a Motion 6
Adjusting Motion Parameters 7
Motion Parameters Toolbox 7
For Models 008A, 18023-A, 18043-A, 008PL, 008Z, and 008PLX 7
For Model 008P 9
Advanced Motion Parameters Toolbox 12
For Models 008A, 18023-A, 18043-A, 008PL, 008Z, and 008PLX 12
Advanced Motion Parameters Toolbox -Research Mode (for Models 008A, 18023-A,18043-A, and 008Z)14
For Model 008C 16
Models 008A, 18023-A, 18043-A, 008Z, and 008PLX Options 19
For Model 008PLX 20
Importing Motions 22
For Models 008A, 18023-A, 18023-A, 008PL,008Z, and 008PLX 26
For Model 008P 26
Saving Imported Motions 27
Section 4. Analysis 28
Region of Interest (ROI) Waveform Analysis. 28
Section 5. Testing 29
Beam Latency Testing for Model $008 Z$ 29
Section 6. Support and Maintenance. 34
Maintaining Software 34
Log File 34
Contacting Sun Nuclear Support 34
Support Website 34
Appendix A: Regulatory Supplement 35
Sun Nuclear Corporation Symbols 35
Operator Responsibility 36
Reporting Health or Safety Related Issues or Concerns 36
Modifications to Equipment 36

This page is intentionally left blank.

Motion Control is an application that allows you to control the movement of the following:

- Model 008A Dynamic Thorax Phantom
- Model 008P Dynamic Pelvis Phantom
- Model 008PL Dynamic Platform
- Model 18023-A Xsight ${ }^{\circledR}$ Lung Tracking "XLT" Phantom Kit
- Model 18043 4D Planning "4DP" Phantom
- Model $008 Z$ MRgRT Motion Management QA Phantom
- Model 008C Dynamic Cardiac Phantom
- Model 008PLX Enhanced Dynamic Phantom

With the Motion Control software, you can quickly set up a movement based on a library of predefined motions, including $\operatorname{Sin}, \operatorname{Cos}^{4}\left(2^{*} \cos ^{\wedge} 4-1\right), \operatorname{Cos}^{6}\left(2^{*} \cos ^{\wedge} 6-1\right)$, Sawtooth, Sharkfin, and 3D Hysteresis (only Models 008A, 18023-A, 18043-A, and 008Z), or Continuous Drift, Transient Excursion, Persistent Excursion, High-Frequency Excursion, and Irregular Movement (only Model 008P). Alternatively, you can import custom motion data from any tab-delimited or commaseparated text file as well as motion tracking systems native recording formats. Motion Control also allows you to save any motion to easily access the same parameters for repeated calibration and testing.

Installation

The Motion Control application requires the Trio PC Motion library, which allows the computer to recognize the Trio controller board in the Dynamic Phantoms. To install the Trio PC Motion library, double-click InstalITrioPCMotion (see https://www.cirsinc.com/software/motion-control/ for the latest version of TrioPCMotion) and follow the steps in the InstallShield Wizard.

To install Motion Control, double-click MotionControlSetup or Setup and follow the steps in the Setup Wizard. Microsoft .NET Framework Version 4.8 is required for the application to run.

Note: Not all software commands apply to all the phantoms that are controlled by the Motion Control software. Phantom specific commands will be identified throughout this user manual.

User Interface

When you start Motion Control, you will see the following window (depending on the phantom selected).

Figure 2-1. Motion Control Window

Phantom Selection

The phantom to be controlled by the software is selected from the Motion menu as shown below. The 008A module controls Models 008A, 008PL, 18023-A, and 18043-A. The 008P module controls Model 008P. The 008C module controls Model 008C. The $008 Z$ module controls Model 008Z, and the 008PLX module controls Model 008PLX.

Motion Control

File	Motion	View	Help		
20	Phantom		,	\checkmark	008A, 008PL, 18023-A, 18043-A
	Sin		,		$008 p$
	$\operatorname{Cos} 4$		*		$008 C$
	Cos6				$008 Z$
	Sawtooth				008PLX
10	Sharkfin				
	Hysteresis				
	Custom				
	Import...			,	
	Options...			1	

Figure 2-2. Motion Menu

Motion Control Window

The Motion Parameters Toolbox (basic and advanced) allows you to adjust the parameters for each axis, including waveform, amplitude, cycle time, phase shift, and start position (baseline or rotational angle).
The Motion Viewer allows you to see both the shape of each motion as you adjust the parameters and the position of each axis as the motion runs.

For Models 008A, 18023-A, 18043-A, 008PL, 008Z, and 008PLX

- The blue line and parameters in the graph represent the Inferior/Superior axis. The parameters are set using the Inferior/Superior tab in the Motion Parameters Toolbox.
- The green lines and parameters in the graph represent the Anterior/Posterior and Lateral axis. The parameters are set using the Anterior/Posterior and Lateral tabs in the Motion Parameters Toolbox.
- The red line and parameters in the graph represent the Surrogate axis. The parameters are set using the Surrogate tab in the Motion Parameters Toolbox.
- There is no Surrogate tab for Model $008 Z$.

For Model 008P

- The blue line and parameters in the graph represent the Inferior/Superior axis.
- The green lines and parameters in the graph represent the Anterior axis. These parameters are set in the Motion Parameters Toolbox. Due to geometry inherent to the mechanical design, both Inferior/Superior and Anterior parameters are in a mathematical relationship that provides the values sent to the phantom's Linear Actuator, which in turn provides motion to the prostate cube insert.

For Model 008C

- The blue line and parameters in the graph represent the Inferior/Superior axis. The parameters are set using the Inferior/Superior tab in the Motion Parameters Toolbox.
- The green lines and parameters in the graph represent the Anterior/Posterior and Lateral axis. The parameters are set using the Anterior/Posterior and Lateral tabs in the Motion Parameters Toolbox.
- The red line and parameters in the graph represent the Surrogate axis. The parameters are set using the Surrogate tab in the Motion Parameters Toolbox.
- The orange line and parameters in the graph represent the ECG signal, which is synchronized with the heart motion waveforms. The scale on the right side of the Motion Viewer is calibrated to mimic an ECG signal printed on graph paper in a cardiologist's office.
The Play button starts running a motion. Once motion is started, it pauses and resumes it.
The Stop button stops a running motion and returns the axes back to their starting positions.
The Loop button toggles between running a motion continuously (up to 1,000,000 loops) and running a motion for the specified number of loops (up to 1000 loops).

The Zoom in/Zoom out buttons allow the user to choose how many cycles are displayed in the Motion Viewer window by choosing between 1, 2, 4, 8, and 16 cycles.

Figure 2-3. Motion Viewer Displaying 1 Cycle

Figure 2-4. Motion Viewer Displaying 2 Cycles

Figure 2-5. Motion Viewer Displaying 4 Cycles

Motion Setup

Using the Motion Library

For Models 008A, 008PL, 18023-A, 18043-A, 008Z, and 008PLX
To set up a motion from the motion library, click the Motion menu, select the motion you want, and then click IS, AP/LR, or IS/AP/LR. The selected motion will appear in the Motion Viewer.

Figure 3-1. Selecting a Motion

- \quad / S sets up movement for the Inferior/Superior and Surrogate axes.
- $A P / L R$ sets up movement for the Anterior/Posterior/Lateral and Surrogate axes.
- $\quad I S / A P / L R$ sets up movement for all axes.

You will not be able to set up AP/LR or /S/AP/LR movements on Dynamic Platforms (Models 008PL and 008 PLX) because these phantoms do not have a physical rotational axis. Custom motions are only available when motion data has been imported from a file.

For Model 008P

To set up a motion from the motion library, click the Motion menu, and select the motion you want to run. The selected motion will appear in the Motion Viewer.

Figure 3-2. Selecting a Motion for Model 008P
$I S / A P$ sets both IS and AP direction amplitudes of the centroid of the prostate, which are needed for the software to calculate the correct linear motion of the phantom's actuator.

As in the case of the Dynamic Thorax module, custom motions are only available when motion data has been imported from a file.

Q Loose 10:
SUN NUCLEAR

Figure 3-3. Custom Motions

Running a Motion

To start a motion, click the Play button. While a motion is running, you can click the Play button to pause and resume a motion, and the Stop button to stop the motion. The status bar at the bottom of the main window will indicate whether a motion is running, paused, or stopped; the number of loops that have been completed; and the running time of the motion (lower-left corner). The Motion Viewer will update to show the real-time position of all the running axes. You will not be able to adjust the parameters of a motion while the motion is running.

Figure 3-4. Running a Motion

Adjusting Motion Parameters

You can adjust the parameters of any motion using either the Motion Parameters Toolbox or the Advanced Motion Parameters Toolbox.

You can switch between either toolbox at any time by clicking the View menu, and then clicking the toolbox you want to show.

Figure 3-5. View Menu

Motion Parameters Toolbox

For Models 008A, 18023-A, 18043-A, 008PL, 008Z, and 008PLX
You can use the Motion Parameters Toolbox to adjust the basic parameters for each axis. Click the Set Phantom Position button to move the axes to the positions shown on the Motion Viewer.

The Inferior/Superior tab allows you to adjust the Inferior/Superior axis amplitude and the cycle time for all three axes.

Figure 3-6. Inferior/Superior Tab
The Anterior/Posterior and Lateral tabs allow you to adjust the Anterior/Posterior and Lateral axis amplitudes, and the cycle time for all three axes. Adjusting the parameters on the Anterior/ Posterior and Lateral tabs has no effect on the Dynamic Platform (Model 008PL) due to the missing physical rotational axis.
For Model 008PLX: The Anterior/Posterior and Lateral motions are achievable only if the platform is set up to use the AP Tilting plane (AP Wedge) and is rotated horizontally about the vertical axis of the couch. This means that the Anterior/Posterior and Lateral motions are mechanically related to the Inferior/Superior motion, and as such, any change in the motion profile for one of the motion's directions will lead to corresponding changes for the other two directions.

Figure 3-7. Anterior/Posterior and Lateral Tabs
The Surrogate tab allows you to adjust the amplitude and phase shift of the surrogate axis and the cycle time for all three axes.

Motion Paramete			
Irfenor/Supenior	Arterior/Posterior	Lateral	Surogate
Amplitude:			
$\square \pm 13.01 \div \mathrm{mm}$			
0		25	
Cycle Tme:			$4.000 \leqslant \mathrm{sec}$
Phase Shit:			
\qquad	${ }^{5}$		0.0 - \%
-100		100	0.0 sec
- Show as a percentage of cycle time			
- Show as time			
Set Phartom Position			

Figure 3-8. Surrogate Tab

For Model 008P

The Inferior/Superior tab allows you to adjust the Inferior/Superior amplitude, while the Anterior/ Posterior tab allows you to adjust the Anterior/Posterior amplitude. Due to the mathematical relationship between the two components of the prostate motion shown in the sketch below, the adjustment of one of the amplitudes leads to automatic adjustment of the other amplitude. Either tab adjusts the cycle time for both components of the motion.

Figure 3-9. Adjusting Amplitudes For Model 008P
Adjusting the Inferior/Superior and Anterior/Posterior will set the related start position angle about which the prostate will oscillate in order to achieve these particular amplitudes.
To freely set the start position angle within its constraining range (20° to 70°), set both the Anterior/ Posterior and Lateral amplitudes to zero, and then select the Lock start position checkbox. Once Lock start position is selected, the adjustment of one amplitude will adjust the other one so that the relationship amplitudes - starting angle is satisfied.

Figure 3-10. Setting Start Position Angle

Advanced Motion Parameters Toolbox

You can use the Advanced Motion Parameters Toolbox to adjust all the parameters for each axis. Once done, click the Set Phantom Position button to move the axes to the positions shown on the Motion Viewer.

For Models 008A, 18023-A, 18043-A, 008PL, 008Z, and 008PLX
The Inferior/Superior tab allows you to adjust the waveform, Inferior/Superior amplitude, cycle time, phase shift, and start position (baseline) for the linear axis.

Any adjustment to the start position will also reduce the maximum Inferior/Superior amplitude because of the mechanical constraints of the Dynamic Phantoms or Platforms.

Figure 3-11. Inferior/Superior Tab
The Anterior/Posterior and Lateral tabs allow you to adjust the waveform, Anterior/Posterior and Lateral amplitudes, cycle time, phase shift, and start position (rotational angle) for the rotational axis.

Adjusting the Anterior/Posterior and Lateral amplitudes will set the related start position angle and allow you to select which quadrant to position the movement in (for models 008A, 18023-A, 18043-A, and 008Z). If you click the Lock start position checkbox, an adjustment to either the Anterior/Posterior or Lateral amplitude will set both amplitudes at the same time in order to hold the start position angle. To freely set the start position angle, set both the Anterior/Posterior and Lateral amplitudes to zero.

Figure 3-12. Anterior/Posterior Tab
The Surrogate tab allows you to adjust the amplitude, cycle time, and phase shift of the Surrogate axis (not applicable for Model 008Z).

Figure 3-13. Surrogate Tab

Advanced Motion Parameters Toolbox - Research Mode (for Models 008A, 18023-A, 18043-A, and 008Z)

The Research Mode is available only from the Advanced Motion Parameters Toolbox and allows the user to select different waveforms for Anterior/Posterior and Lateral amplitudes, which are used to calculate the Rotational Start Position and the oscillation angles about this starting angle.

Figure 3-14. Enable Research Mode
The Research Mode calculates and defaults to the best scenario (angle to oscillate about) so that the maximum volumetric coverage of the real volume due to the tumor motion is achieved by the volume generated by the motion of the phantom's target. To perform the calculations, the algorithm takes into account the current tumor position, the closest position achievable by the phantom's target for that point in time, along with the Target Distance and Target Size (which are set up in the Options menu).
Selecting the same waveform for Anterior/Posterior and Lateral amplitudes will provide the same results as if the Research Mode were not selected.

Due to the symmetry of the arc of the circle on which the phantom's target can rotate, there are either two or four possible angles about which the target can rotate to achieve the Anterior/ Posterior and Lateral amplitudes. Due to the mechanical limitation of the phantom's design, if two symmetry angles fall into the safe zone of the moving rod rotation, which is located on each side of 180° (0° is at zenith), then only two Rotational Start Position angles are available.

Figure 3-15. Research Mode Calculates Best Coverage

Figure 3-16. Simulation

For Model 008C

The ECG tab allows you to select the desired beats per minute (BPM) rate. If no adjustments are made to the BPM, the phantom will run at 60 BPM.

Figure 3-17. Select Beats Per Minute
The Inferior/Superior tab allows you to adjust the Inferior/Superior amplitude of the motion profile of a heart region, Aorta, Apex (default), and Center respectively.

Figure 3-18. Adjust Heart Region
The Inferior/Superior tab also allows the user to account for the movement of the heart due to breathing.

Figure 3-19. Movement of Heart Due to Breathing
When Include Breathing is selected in the Breathing section of the Inferior/Superior tab, the heart moves in an Inferior/Superior direction based on a waveform that results from adding the motion waveform due to the heart beating to a built-in waveform specific to the Dynamic Thorax. The built-in breathing waveform is selected from a drop-down box. The user can adjust the amplitude and cycle time of the breathing. Based on the breathing cycle time and heart rate (BPM), the actual possible cycle time is calculated automatically.

Figure 3-20. Actual Breathing Cycle Time Calculation

Note: There might be cases when Include Breathing is selected that the waveform to be run requires accelerations/decelerations greater than the ones supported by the linear step motor. In these cases, the user is presented with a Modifications Needed message upon pressing the Play button. The two choices below are available.

- Select Yes: Heart rate (BPM) is preserved while the amplitude is adjusted so that accelerations/decelerations required by running the waveform are less than the maximum supported by the hardware.
- Select No: Heart rate (BPM) is adjusted while the amplitude is preserved so that accelerations/decelerations required by running the waveform are less than the maximum supported by the hardware.

Figure 3-21. Modifications Needed Message

The Anterior/Posterior and Lateral tabs allow you to adjust the Anterior/Posterior and Lateral amplitudes.

Figure 3-22. Adjust Anterior/Posterior and Lateral Amplitudes
The Surrogate tab allows you to adjust the amplitude, cycle time, and phase shift of the Surrogate axis similarly. The built-in breathing specific waveforms (same waveforms that are built-in for Model 008A Dynamic Thorax) can be selected from the drop-down box. In addition, you can select to have the Surrogate axis run the same waveform and parameters as the ones for the Inferior/ Superior breathing by selecting Sync Surrogate waveform to I/S Breathing provided that Include Breathing was selected on the Inferior/Superior tab.

Figure 3-23. Sync Surrogate Waveform to I/S Breathing

The Options dialog is launched from the Motion menu and contains overwriting parameters, which are read by the software's modules in order to perform the correct simulations and tumor position calculations.

Options	
Target Distance Standard Dosimetry Rod 4D CT QA Rod Custom: \square 15.000 mm	Target Size Standard Custom: \square mm
Surrogate Simulation Chest Diaphragm	
008PLX Vertical Angle (Anterior/Posterior) 11.300 degrees	008PLX Horizontal Angle (Lateral) \square 0.000 degrees
	OK

Figure 3-24. Options Dialog

- Target Distance sets up the distance between center of target and longitudinal axis of moving rod (Rotation axis) (for Models 008A, 18023-A, 18043-A, and 008Z).
- Standard Dosimetry Rod is the distance used for all moving rods except for the 4D CT QA Rod. The default value of this parameter is 15 mm . The default value of this parameter is 10 mm for the moving rod of Model $008 Z$.
- $4 D$ CT QA Rod is the distance from axis of rotation to cylindrical surface of inner moving rod and top of high contrast fiducial, respectively. The default value of this parameter is 22.825 mm .
- Custom can take any value between 10 mm and 100 mm and is designed for research purposes.
- Surrogate Simulation allows the surrogate platform to simulate the chest when the surrogate actuator is attached in a vertical position to the liner actuator or the diaphragm when it is attached in a horizontal position. The appropriate selection of this parameter will ensure that the surrogate platform moves in the correct direction for a supine orientation (for Models 008A, 18023-A, 18043-A, 008PL, and 008PLX).
- Target Size is used by the Research Mode algorithm to calculate the volumetric percentage coverage (for Models 008A, 18023-A, and 18043-A). The default value of this parameter is 20 mm .

Note:

- Model 008M does not use a 4D CT QA Rod or allow for Custom ones. Therefore, the Standard Dosimetry Rod should be checked only for this phantom.
- Model $008 Z$ does not need a Surrogate since it is designed for real-time motion tracking with MR imaging, and as such, there is no Surrogate Simulation for it. Also, the Standard Dosimetry Rod for Model $008 Z$ is 10 mm due to the simulated tumor sizes.
- Because the Target Distance is not changed when a new phantom is selected, it is recommended that the desired Target Distance be set up in Options every time a new phantom is selected.

For Model 008PLX

Model 008PLX can be set up so that its moving plate (on which phantoms or measuring devices are placed so that they account for motion) moves parallel to a linac's couch or at different angles with respect to the couch. There are four possible different setups:

- 008PLX with its moving plate parallel to the couch $=>$ input 0° in 008PLX Vertical Angle box and in 008PLX Horizontal Angle box
- 008PLX with its moving plate parallel to the couch but also moving in AP direction due to the use of the AP wedge $=>$ input 11.3° in 008PLX Vertical Angle box and 0° in 008PLX Horizontal Angle box
- 008PLX with its moving plate moving at 30° with respect to the longitudinal axis of the couch but no movement in AP direction (no AP wedge use) $=>$ input 0° in 008PLX Vertical Angle box and 30° in 008PLX Horizontal Angle box
- 008PLX with its moving plate moving at 30° with respect to the longitudinal axis of the couch but also moving in AP direction due to the use of the AP wedge $=>$ input 0° in 008PLX Vertical Angle box and 30° in 008PLX Horizontal Angle box

Figure 3-25. Motion Options for Model 008PLX

Note:

- The 008PLX Vertical and Horizontal Angles are values that are stored from one running session to another one. Therefore, if the setup of Model 008PLX is changed, the user must change these values in concordance with the physical setup of the phantom.
- The motion of the moving plate of 008PLX in IS, AP, and Lateral is obtained through physical/mechanical means (the AP Wedge and the horizontal setup at 30°) so that the software will use the trigonometric relationships between the linear motion of the actuator to calculate the actual motion in IS, AP, and Lateral direction based on the angles entered for the 008PLX Vertical and Horizontal Angles. To account for possible 008PLX-couch spatial orientation, the user can input any value between 0° and 15° for the 008PLX Vertical Angle and between 0° and 30° for the 008PLX Horizontal Angle.
- 008PLX cannot be programmed to achieve motion profiles (waveforms) for the IS, AP, and Lateral directions that are different due to the mechanical connections mentioned above. Therefore, any change to the motion parameters to one of any of the motion directions leads automatically to changes to parameters for the other two motion directions. The motion profile of the Surrogate is however programmed independently from that of the moving plate.

Figure 3-26. Motion of 008PLX in IS, AP, and Lateral Directions

You can import motion data from any tab-delimited, comma-separated, or fixed column format text file. To import motion data, click the Motion menu and then click Import. If you do not see your native format recorded file, select All Files in the Import Motion window.

Figure 3-27. Importing Motion Files
Select the file from which you want to import motion data and then click the Open button. You can view any column of data that appears in the file in the Import Motion Data window.

Figure 3-28. Imported Motion Data
Because the software allows different waveforms to run for each of the phantom's axes, import the data from each column that contains tumor positions in a 3D space separately, in order to select the appropriate waveform for each of the phantom's motions.

If the file has more than one column of data, you can select which column to view by clicking the Import data from column drop-down box. The gray line in the graph represents the actual data from the file. The blue line represents the data that has been smoothed. The data is smoothed using a rolling average, and you can adjust the amount of smoothing (from degree 0 , which is equal with the raw data to 100). The smoothing degree is set to 10 by default.
When importing only a portion of the patient-specific recorded data, it is recommended that you select the START and END points so that they have close amplitudes. Selecting START and END points with very different amplitudes will cause the system to fill in between the END and START points when the looping function is used (see Figure 3-29 and Figure 3-30).

Figure 3-29. Start and End Points With Very Different Amplitudes
This fill-in will therefore modify the original data, and therefore, its extent should be minimized as much as possible. If the left mouse button is kept pressed when the START point is selected, a horizontal line is created, which crosses the data at the same amplitude. Counting either side of the START point, all even intersection points are therefore good candidates for being the END point. Keep the left mouse button pressed while moving along the horizontal line to select an END point, which is done by releasing the left mouse button.

Figure 3-30. Good End Point Candidates

The Sample Rate is the sampling rate of the Motion Control software and represents the number of points used to reconstruct the original waveform. If the sampling rate of the recorded data is specified in the file header that contains the tracking data, then the software will read that value and default to it. If this sampling rate is not specified, then the software will default to 30 samples per second. It is recommended that the user identify the actual sampling rate of the original recorded data and input it into the Sample Rate box so that the correct cycle time is calculated for the imported waveform.

Figure 3-31. Sampling Rate
The import function also allows for assigning custom or default names to the imported waveforms.

At the bottom of the Import Motion Data window, there is a Mirror Waveform checkbox, which when selected will mirror the waveform about the time axis.

Figure 3-32. Mirror Waveform
This function could be useful in cases where the export of the original waveform was done "upside down."

To zoom in on the graph, or to select a region of data to import, click and drag the mouse in the graph. A marquee appears around the selected region, and a gray horizontal line shows all the amplitudes that match where you started your selection, to assist you in creating a suitable loop (as explained above).

Figure 3-33. Zoom In on Graph
To pan the selected region, hold down the Ctrl key and then click and drag the mouse. When you are ready to import the data that appears in the graph, click the OK button. The selected region is normalized from-1 to 1, the starting and ending points are adjusted to match, and the custom data is loaded into the Motion Viewer.
You can also zoom in or out on the graph using the mouse wheel. Left-click inside the Import window and use the mouse wheel.

After data is imported from a file, the Custom menu option in the Motion menu becomes available.

Figure 3-34. Custom Menu Option

For Models 008A, 18023-A, 18023-A, 008PL,008Z, and 008PLX

If the tracking motion file header specifies the scale factor used, then the actual amplitudes are imported, provided that they are not larger than the mechanical limits of the phantom's motion. In that case, the larger amplitudes are scaled to the limits of the motion range. When the recorded breathing waveform files do not have a specified scale factor, the imported Linear and Surrogate amplitudes are scaled to $\pm 10 \mathrm{~mm}$ by default, while the Rotational amplitudes are scaled also to $\pm 2.50 \mathrm{~mm}$ by default for Anterior/Posterior and to $\pm 1.00 \mathrm{~mm}$ for Lateral.

For Model 008P

If the tracking motion file header specifies the scale factor used, then the actual amplitudes are imported, provided that they are not larger than the mechanical limits of the phantom's motion. In that case, the larger amplitudes are scaled to the limits of the motion range. The algorithm used to determine the angle of oscillation for the prostate is designed to achieve both the Inferior/ Superior and Anterior/Posterior amplitudes. Specifically, the Inferior/Superior amplitude is either set equal to the maximum amplitude from the waveform input or scaled to the maximum mechanical limit of the prostate's motion. The Anterior/Posterior amplitude is calculated using a mathematical relationship between the amplitudes and rotational starting angle.
Information about the parameters of the imported waveforms is presented (color-coded) in the lower-left corner of the Motion Viewer window.

Model 008A \& 008PL

Inferior/Superior	
Woveform:	
Custom	
Amplitude:	$\pm 4.68 \mathrm{~mm}$
Cycle Time:	44.000 sec
Phase Sift:	0.000 sec
Start Postion:	0.00 mm
Curent Postion:	-1.27 mm
ROI Avg. Position:	-0.65 mm
ROI Total Time:	44.000 sec

Anterior/Posterior		Lateral		Surrogate	
Waveform:	Sin	Wavelorm:	Sin	Waveiom:	Custom
Ampliude:	$\pm 4.68 \mathrm{~mm}$	Anplitude:	$\pm 1.00 \mathrm{~mm}$	mplitude:	$\pm 4.68 \mathrm{~mm}$
Cycle Time:	4.000 sec	Cycle Time:	4.000 sec	cle Time:	4.000 sec
Phase Shit:	0.000 sec	Phase Shft:	0.000 sec	ase Shift:	000
Stat Posstion:	.77.94	Star Postion:	.77 .94 000 mm	Start Postion:	0.00 mm
Currert Postion: ROI Avg. Position	0.00 mm	Currert Postion: ROI Avg. Postion:	$\begin{aligned} & 0.00 \mathrm{~mm} \\ & 0.00 \mathrm{~mm} \end{aligned}$	Current Postion: ROI Avg. Postion:	$\begin{aligned} & -1.27 \mathrm{~mm} \\ & -0.65 \mathrm{~mm} \end{aligned}$
ROI Total Time:	4.000 sec	ROI Total Time	4.000 sec	ROI Total Time	44.0

Model 008P

Inferior/Superior		Anterior/Posterio	
Waveform:	Custom	Waveform:	Custom
Amplitude:	$\pm 1.11 \mathrm{~mm}$	Amplitude:	$\pm 0.50 \mathrm{~mm}$
Cycle Time: Phase Shft:	$\begin{aligned} & 62.200 \mathrm{sec} \\ & 0.000 \mathrm{sec} \end{aligned}$	Cycle Time: Phase Shift:	$\begin{aligned} & 62.200 \mathrm{sec} \\ & 0.000 \mathrm{sec} \end{aligned}$
art Postion:	24.14	Star Postion:	24.14
Curent Postion:	-0.33 m	Curent Postion	0.10
ROI Avg. Postion:	-0.19m	ROI Avg. Postion:	-0.0
ROI Total Time:	62.200 sec	ROI Total Time:	62.200

Figure 3-35. Imported Waveform Parameters

Saving Imported Motions

Even though you could use an unlimited number of imported motions as custom motions (waveforms) during one session, these imported motions are not automatically saved when the running session is closed. If you plan to reuse the imported motions, then Save Motion and/or Save Motion As should be used.

Q Loops: 10 *
SUN NUCLEAR
Figure 3-36. Custom Motion
When Save Motion is used for the first time, you are prompted for a name and location for the file. Once a file is saved, it can be opened using either Open Motion or Recent Motions.

Figure 3-37. Open Imported Motion File
If modifications are performed to a motion in a saved file and you wish to keep both the original motion and the modified one, then use Save Motion As instead of Save Motion. This will save the modifications without prompting for a new file name. Like in most other Windows applications, Save saves the modifications without warning.

Region of Interest (ROI) Waveform Analysis

In addition to displaying the Linear, Rotational, and Surrogate parameters, the Motion Viewer also displays the ROI Average Position and ROI Total Time. To select an ROI, move the mouse over the graph, and either click and drag the mouse, or click once to set the starting amplitude and then click again to set the ending amplitude. The status bar displays the position of the mouse cursor in the graph. To adjust the size of the ROI, you can click and drag either of the two lines to a new position. To deselect the ROI, click anywhere else on the graph. When no selection is visible, the ROI is assumed to be the entire region of the graph.

SUN NUCLEAR
Figure 4-1. Select Region of Interest

Beam Latency Testing for Model $008 Z$

1 Make sure the $008 Z$ module is selected in the Motion Control software (see below).

Note: The Gating tab is implemented for the other phantom models for further hardware/software developments.

Figure 5-1. Select Phantom
2 Chose a built-in waveform to run for the Beam Latency testing. CIRS strongly suggests that the Cos^{4} or Cos^{6} waveform is chosen to do the gating of the Inferior/Superior motion and subsequently, the Beam Latency testing due to its profile, which resembles a human breathing closer than the other built-in waveforms.

3 Chose the IS option for the waveform as this option will have no rotation component for the target motion.
4 To put the target in the position where you want to deliver the beam, you can do one of the following:

- Start the motion and use the Pause button to pause the motion on the bottom plateau regions of the waveform

Figure 5-2. Pause Motion on Bottom Plateau Regions

- Send the target to the amplitude corresponding to the plateau regions from the Start Position slider bar/entry box (see below). Before doing this, make the amplitude of Inferior/ Superior zero.

Figure 5-3. Use Amplitude Corresponding to Start Position of Plateau Regions
5 Acquire images of the target in the spatial position where the motion is to be gated, contour the target, and establish the boundary for the Beam On. To find the exact location where the beam is to be cut off (Beam Off), use the Start Position again to move the target (in blue) as shown in the right image below. Note the Start position for which the target overlaps the Beam On boundary.

Figure 5-4. Move Target Using Start Position
6 Bring the Start Position back to zero and set up the amplitude of the waveform that was chosen at the beginning.

7 Set up the gating window so that it starts and ends at the desired amplitudes (this amplitude is known from the previous step; the Beam On and Beam Off can be set up with the same amplitude or with different ones; the interface of the Gating tab should be self-explanatory). For example, if the amplitude of the waveform was chosen to be ± 20, and the target overlaps the Beam On boundary at -12.5, then the gating should be set up as shown below. (Notice the two markings on the waveform corresponding to an amplitude of -12.5 and the gating square waveform in orange on the image below.)

Figure 5-5. Set up Gating
8 Start the real-time imaging/motion tracking of the MRI-Linac and then start the motion of the phantom. The Beam Latency (in ms) is displayed next to the run command buttons in the ribbon of the Motion Control window (see below). The values are averages of the Time Delay On (or Off) for the cycles of the waveform that were already executed. If you want to look at individual time delays for individual cycles of the waveform, then you need to first stop the motion and then click the ellipsis button for either Time Delay On or Time Delay Off.

Figure 5-6. Time Delays for Individual Cycles

Note: It is not recommended to conduct Beam Latency testing when the Gating Signal, produced by the software using selected gating amplitudes, is already active before initiating the motion of the phantom. This is because the comparison between the Beam On and Beam Off signal from the MRI-Linac and Gating Signal may yield inaccurate results. In this case, the software algorithm cannot distinguish between Beam On and Beam Off time delays, and as such, wrong information regarding theses parameters could be provided.

Figure 5-7. Gating Signal
Note: Beam Latency testing can be performed also on patient-specific breathing waveforms. Of course, such waveforms are not recommended for commissioning or ongoing QA testing since irregular waveforms will have various speed profiles. This will lead to different values for Beam On and Beam Off time delays depending on where the gating window intersects the waveform. If using an irregular waveform, the user must ensure the Gating Signal is not on when the motion of the phantom starts (see note above). Also the user must look at the individual Beam On and Beam Off time delays computed, when the Gating Signal intersects the irregular waveform in the same regions for each loop cycle executed, rather than the average calculated by the software. Therefore, the user should look at the values shown in the pop-up windows that appear in the main display after clicking the ellipsis button (see below).

Figure 5-8. Look at Corresponding Regions for Individual Cycles

Maintaining Software

For assistance with software installation and maintenance, contact Sun Nuclear Support.

Log File

The software creates a log file that records events such as Application started, Application initialized, Loading motion data to the controller, Motion started (with information about the motion profile/waveform), Motion stopped, and Application closed (see below).

$11 / 19 / 2019$	$1: 27: 42 \mathrm{PM}$	Information	Application started
$11 / 19 / 2019$	$1: 27: 43 \mathrm{PM}$	Information	Application initialized
$11 / 19 / 2019$	$1: 28: 24 \mathrm{PM}$	Information	Loading motion data to the controller
$11 / 19 / 2019$	$1: 28: 31 \mathrm{PM}$	Information	Loading motion data to the controller
$11 / 19 / 2019$	$1: 28: 31 \mathrm{PM}$	Information	Motion started: linWaveform=Sin, linWaveformName=Sin,
$11 / 19 / 2019$	$1: 31: 00 \mathrm{PM}$	Information	Motion stopped
$11 / 19 / 2019$	$1: 31: 11 \mathrm{PM}$	Information	Loading motion data to the controller
$11 / 19 / 2019$	$1: 31: 11 \mathrm{PM}$	Information	Motion started: linWaveform=Sin, linWaveformName=Sin,
$11 / 19 / 2019$	$1: 32: 01 \mathrm{PM}$	Information	Motion stopped
$11 / 19 / 2019$	$1: 32: 07 \mathrm{PM}$	Information	Loading motion data to the controller
$11 / 19 / 2019$	$1: 32: 08 \mathrm{PM}$	Information	Motion started: linWaveform=Sin, linWaveformName=Sin,
$11 / 19 / 2019$	$1: 32: 58 \mathrm{PM}$	Information	Motion stopped
$11 / 19 / 2019$	$1: 33: 01 \mathrm{PM}$	Information	Application closed
Figure 6-1. Log File Events			

Under normal installation, the log file is stored in C:\Users\Admin\AppData\Roaming\Sun Nuclear. For a custom installation, a Windows search for a file called MotionControl.log can be used.

Contacting Sun Nuclear Support

You may request support in two ways:

- Submit a support request using our online form. See Support Website below.
- Contact the Sun Nuclear Support team by telephone:
- U.S.A.: + 1 321-259-6862, Option 3
- Netherlands: +31 2039990 41, Option 1
- Germany: +49 61025049 500, Option 2

Support Website

1 Open an internet browser and navigate to www.sunnuclear.com/support.
2 Enter your email address and password and then click Login.

- To download product information, click Products and Devices, select the product, and then select the download type.
- To open a Support request, click Open New Case, complete the form, and then click Create Case.

Appendix A: Regulatory Supplement

Sun Nuclear Corporation Symbols

The following symbols are used in this guide and in Sun Nuclear Corporation's product labels.

WARNING: This symbol indicates a risk of electric shock. (EN ISO 7010, W012)

WARNING: This symbol indicates a hazard that could result in major injury or equipment damage. (EN ISO 7010, W001)

CAUTION: This symbol indicates a potential hazard that could result in minor injury or equipment damage. (EN ISO 15223-1, 5.4.4)

CAUTION: This symbol indicates a pinch hazard. (EN ISO 7010, W024)

Note: Important or supporting information.

Manufacturer's Identification (name and address). (EN ISO 15223-1, 5.1.1)

Date of Manufacture. (EN ISO 15223-1, 5.1.3)

Temperature limitation. (EN ISO 15223-1, 5.3.7)

Humidity limitation. (EN ISO 15223-1, 5.3.8)

Atmospheric pressure limitation. (EN ISO 15223-1, 5.3.9)

REF
Catalog Number. (EN ISO 15223-1, 5.1.6)

Consult instructions for use. This equipment must be used in accordance with the instructions in this manual. Read all instructions and safety labels before use. (EN ISO 15223-1, 5.4.3)

Operator Responsibility

The instructions in this manual are intended for trained clinical personnel. The operator is solely responsible for the accurate setup and use of the device.

Reporting Health or Safety Related Issues or Concerns

A notice to the user and/or patient that any serious incident that has occurred in relation to the device should be reported to the manufacturer and the competent authority of the Member State in which the user and/or patient is established.

To report any safety or health related issues or concerns regarding the use of Sun Nuclear products, contact Sun Nuclear directly.

Modifications to Equipment

Any changes or modifications to the device that are not expressly approved by Sun Nuclear Corporation could void your warranty.

